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Abslrad. After presenting an intuitive picture of quasi-panicle UanspOrf in m e s m p i c  
superconductors, which emphasizes the intimate relation behueen Andreev scauering and m 
resistivity. we develop a general Wry of oc transport in mesoscopic.normal~uperconducting 
shuctures. Generalized multi-pmte conductance formulae are derived, which fake into 
aCFoun1 MK only Ihe effect of Andreev rcatte~ng on transpon coeffidents. but also the 
nonsonservation of  quasi-panicle charge which arises in the presence of  a superconducting 
mndensate. Experiments on quari-panicl& charge imbalance are described naturally by this 
approach. ~. 

1. Introduction 

At.a  low enough temperature, or for small enough systems, a quasi-particle such as 
an electron or hole can pass through a sample without scattering inelastically. In 
this mesoscopic limit, the phase coherence of quasi-particles is preserved and transport 
pmperties depend in detail on the diffraction pattern produced by elastic scattering from 
inhomogeneities and boundaries. During the past decade, the study of normal mesoscopic 
systems has Jed to the .discovery of a range of .new phenomena, including universal 
conductance fluctuations [1,2], quantized conductance of point contacts [3,4] and the 
detection of macroscopic changes in transpoa coefficients arising from tunnelling within 
a single atomic two-level system [5].  

Until recently, these advances had centred almost exclusively on normal mesoscopic 
systems. However during the past few years, the hitherto distinct fields of mesoscopic 
physics and superconductivity have come together, leading to the possibility of a range of 
new developments involving hybrid normal-superconducting structures. One class of such 
systems is typified by mesoscopic Josephson junctions, which arise when a mesoscopic weak 
link is~fofied between two non-mesoscopic superconducting contacts. For such structures, 
the critical current I ,  is predicted to exhibit a range of new quantum phenomena Recent 
examples are the discretization of the’critical c-nt through a ballistic point contact [SI, 
the appearance of a universal resonant Josephson current through quantum dots [7] and the 
prediction of universal supercurrent fluctuations in diffusive point contacts [SI. 

Another class of hybrid systems arises when the superconductor itself is mesoscopic. 
This irises when a small superconducting sample is connected to the outside world 
through normal extemal leads, or when superconducting islands are immersed in a normal 
mesoscopic background. In such systems, transpon propetties such as electrical or thermal 
conductances exhibit new effects which are absent from their normal counterparts. For 
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example, the electrical conductance of a sample containing two superconducting islands 
is predicted to vary periodically with the phase difference of the islands, even when the 
Josephson coupling between the islands is negligibly small (9-111. Another example is the 
prediction of superconductivity-induced Anderson localization [12-141 in long strips, where 
quasi-particles above the bulk energy gap can become localized by spatial fluctuations in a 
superconducting order parameter. 

This paper is aimed at deriving multi-probe conductance formulae, which form a starting 
point for examining a range of new effects associated with this second class of structures. 
Many of these effects arise because of the fundamental difference between quasi-particle 
transport and electrical conductance in the presence of a superconducting condensate. I n  
section 2, this is emphasized by presenting an intuitive picture of charge transport, which 
provides new insight into the question of why the presence of an energy gap in a BCS 
superconductor implies zero resistivity. In section 2, we note that such a gap leads to 
Andreev scattering and argue that if the latter occurs in steady state, then zero resistivity is 
an immediate consequence. 

The argument presented in section 2 is important, because it suggests that modem 
approaches to transport in normal mesoscopic systems should form a useful starting point 
for understanding transport in the presence of superconductivity. However, since current 
theories of transport in normal mesoscopic structures do nor differentiate between quasi- 
particle diffusion and charge transport, it is clear that the fundamental conductance formulae 
at the heart of these theories must be modified. In [IS] current-voltage relations needed to 
modify both the Landauer formula [ 16,171 and the two-probe Biittiker formula [I81 were 
written down. In sections 3 and 4, a generalization of this treatment is presented, which not 
only yields appropriately modified multi-probe conductance formulae, but also provides a 
natural framework for describing measurements of quasi-particle charge imbalance [ 19-2 I ]  
in mesoscopic structures. 

The multi-probe formulae derived in sections 3 and 4, which form the central results 
of this paper, express multi-probe conductances in terms of S-matrix coefficients. In [91, 
‘golden rules’ for Andreev scattering were derived, which express S-matrix elements in 
terms of scattering solutions to the Bogoliubov-de Gennes equation. Generalizations to 
multi-probe systems are presented in appendix A. 

2. Andreev scattering and superconductivity 

In this section, an intuitive picture is presented, which underpins the more formal analysis 
appearing in later sections. This picture illustrates the intimate relationship between Andreev 
scattering and superconductivity and demonstrates why the energy gap of a superconductor 
can lead to a vanishing resistivity. To this end, consider first an ideal one-dimensional 
free-electron gas in a box of size L. At zero temperature, the freeelectron energy levels 
Eb = fi2kz/2m are filled up to the chemical potential p, as shown in figure I(a). Figure 
I@) shows excited states of such a system with the same number of electrons, produced by 
removing an electron from a state q with energy Eq -= .U and placing it in a state p, with 
6 z p. The change in momentum of the system is Ak = p -4. while the change in energy 
is AE = Ep - Eq = (E,, - p)  + (/I - E,,). Since each of the quantities in the parentheses 
is positive, it is conventional to define quasi-particle excitation energies 6; = IEk - pi 
so that AE = 6,” + €0,. The subscript -9 in the second term is again conventional and 
recognizes the fact that the change in momentum of the system can be regarded as a change 
+p associated with the electron added to p and a change -9 associated with the electron 
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removed from q, the latter being equivalent to a hole added to state -4. These quasi-particle 
dispersion relations, which express the change in energy of the system as a function of the 
change in system momentum, are shown in figure l(c), along with the locations of the above 
particle-like and hole-like excitations. Since k now represents the system momentum, it is 
clear that the group velocity = Ti-'&€," of a particle-like (hole-like) excitation is parallel 
(anti-parallel) to its wavevector. 

Figure 1. b) The parabolic energy specwm for a non- 
in.teracting system of electrons in one dimension. (6) 
An excitation formed by removing an elecrmn telow 
the Fermi level p and placing it into a higher energy 
stale. (c) The corresponding quasi-panicle excitation 
s" 

Figure 2. A m energy gap arises w k n  cusps in 
the freeeleclron quasi-particle dispersion curve F a m e  
rounded. 

~ .~ 

In terms of the excitation picture of figure' ](e), a superconducting transition is merely 
an expression of the fact that nature dislikes a singularity and therefore at a low enough 
temperature a phase transition occuk, which rounds the cusps at E = 0. For the simplest 
case of an s-wave weak-coupling superconductor, this~yields the dispersion relation shown 
in figure 2, where 

= [(E:)* + 1A12]"2. (2.1 ) 

Clearly, such a dispersion relation can only be written down when k is a good quantum 
number. More generally, there exists a spatially varying superconducting order parameter 
A(x)  which vanishes in the normal phase. In most physical situations the coherence length 
$, which sets the scale for spatial~variations in A(.r), is much larger than the typical inverse 
wavevector k;' of a quasi-particle, where kp is tiefined by f i  = h2kg/2m. Consequently 
qualitative results can be obtained using.quasi-classical arguments, with IA(x)l acting as a 
local energy gap. 

To answer the question of why the existence of a non-zero A(x)  implies zero resistivity, 
it is necessary to understand how excitations are (Andreev) reflected at an interface between 
a normal metal and a superconductor. First; recall how the reflection of an electron at a 
normal~potential barrier U ( x )  is.described quasi-classically. As shown in figure 3(4), an 
incident. electron of energy E is reflected at a classical turning point, where the local 
wavevector k ( x )  = h - ' 4 2 m ( E  - U ( x ) ]  vanishes. In this picture the electron slides down 



a sequence of local parabolic dispersion curves, until at the turning point it passes through 
the dispersion minimum and both the group velocity and momentum are reversed. Andreev 
reflection [22] at a normal-superconducting (N-S) interface can be understood through a 
similar argument. By definition, A(x)  vanishes in the normal material and achieves its bulk 
value A(o0) deep inside the superconductor. In the absence of other potential variations at 
the interface, the reflection of a quasi-particle can again be described by a sequence of local 
dispersion relations, as shown in figure 3(b). Again, the classical turning point arises when 
a quasi-particle of fixed energy, slides around the minimum of a local dispersion curve and 
reverses its group velocity. In contrast with normal reflection, the momentum is almost 
unchanged, whereas the character of the excitation has changed from being particle-like to 
hole-like. In two dimensions, the reflection process is shown in figure 3(c). In k space an 
incident particle outside the Fenni circle evolves into a hole inside the Fermi circle. In real 
space, all components of the group velocity are reversed and the N S  boundary acts like a 
phase conjugate mirror. 

These essential differences between normal and Andreev scattering immediately imply 
that there is a fundamental difference between charge transpolt in superconducting and 
normal materials. To highlight an important consequence of this, first consider charge 
transport though a normal mesoscopic material. A typical viewpoint adopted when 
describing such a system in one dimension is shown in figure 4(u), which depicts a scattering 
region of length L connected by perfect external leads to the outside world. If a unit particle 
flux is incident from the left, then at equilibrium the only possible outgoing fluxes are a 
transmitted flux on the right and a reflected flux on the left. The intensities of these fluxes 
are To and Ro respectively and satisfy Ro + 6 = 1. The current in the left lead is clearly 
I = e(l - Ro), where e is the electronic charge. If the scattering region contains a finite 
fraction of impurities, then it is well known that as L + CO, 6 + 0. Consequently 
Ro + 1, I + 0 and therefore the electrical resistance diverges. In contrast, if A(x)  is 
non-zero within the scattering region, two new possibilities of Andreev transmission and 
Andreev reflection arise, as shown in figure 4(b). If the intensities for these processes are 
T, and R, respectively, then RO + TO + Ra + '& = I and since a reflected hole moving to the 
left produces a cumnt to the right, the current in the left lead is I = e(l - Ro + Ra). The 
relative strengths of different scattering processes depend on the microscopic structure of 
an interface and only for the ideal boundary considered in figure 3(b) will normal reflection 
processes be small. As L 3 m one again finds that all transmission coefficients vanish, so 
that Ro + R, = 1. However, at equilibrium, provided R, # 0, the current does not vanish 
and therefore the electrical resistance no longer diverges. In practice, since the reflection 
of a quasi-particle wavepacket takes place in a boundary layer of finite extent, R, and Ro 
will approach constant values as L + m and therefore the resistance per unir lengrh will 
vanish. 

The above argument is not quite complete, because to obtain an equilibrium situation 
in which the charge on the superconductor does not change with time, one must consider 
the effect of a second current carrying lead, connected to the right of the scatterer. This 
will be taken into account in the following section and does not change the above result. 
To summarize, the presence of a non-zero energy gap leads to the possibility of Andreev 
scattering and the occurrence of the latter in steady state implies that a current can flow 
through a dirty material, whose resistance would otherwise diverge. Of course, an energy 
gap is not necessary for the onset of superconductivity. Andreev scattering can arise even 
in the absence of an energy gap, provided there exists an order parameter which couples 
particles to holes. For this reason, it is the latter rather than the former that is crucial to 
superconductivity. 



Multi-prohe conductance formulae for mesoscopic superconductors 4191 

(a) 

. .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Fwre 3. (0) Qumi-clmsical refledion of an e h -  Fimre 4, (n) Transmission and reR&tion of normal 
tmn by a potential barrier. (b) The companding electrons in one dimension. (b) The additional 
picture leading to Andreev renation at a nonnal- Andreev pronsse~.  which  arise in the presence' of 
superconducting interface. In more than one dimension, superconductivity. 
( E )  shows Andreev reflection in k space and red space. 

The above argument demonstrates that, while diffusive properties of quasi-particles 
may not be qualitatively different from those of normal systems, the physics of charge 
transport is grosdy affected. This implies that many of the standard formulae used to 
describe charge transport in normal m e m e p i c  media must be modified. To illustrate this, 
we now quantify the above arguments by deriving generalizations of standard formulae for 
multi-probe conductances of mesoscopic systems in the 'presence of Andreev scattering. 

.~ 

3. Multi-probe conductance formulae in the presence of Andreev scattering 

Consider an arbitrary scatterer S containing a superconducting region of chemical potential 
f i ,  connected to n external reservoirs by ideal normal cukentcarrying leads, as shown in 
figure 5. If the chemical potentials of the reservoirs ark (bi} and the currents ( I j ] ,  then~in 
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the linear response regime the currents are related to the small quantities Q; - .U] by an 
expression of the form 

n 
I; = C U i j ( V i  - V )  

j=l 

where if e is the electronic charge, Vj - V = - p)/e. For a normal non-interacting 
system, one can show that ELI uij = E;=, aij = 0. In this case the potential V does 
not affect the right-hand side of (3.1) and when all {p;)  are equal, all currents vanish. 
These conservation laws are implicit in the derivation of conductance formulae for normal 
systems and reflect the fact that, in the absence of inelastic scattering, only extemal potential 
differences induce charge flow . In contrast, for an interacting system, and in particular 
when Andreev scattering is present, they no longer hold, because the scattering region can 
act as a source or sink of quasi-panicle charge. As a consequence all conductance formulae 
are modified and we are led to identify the quantities 

n 
x; = u;j 

j = I  

and 

(3.3) 

as the natural variables which quantify this change. In section 4, the relation between a;j and 
scattering mamx elements will be considered, but for the purpose of obtaining generalized 
conductance formulae the values of these coefficients need not be specified 

F g r e  5. A scatterer S with candenme potential V .  
mnnected 1- n normal cumnt-wing leads. “2 

For the equipotential case of = V’ for all i, (3.1) yields l i  = x;(V’ - V )  and 
therefore a non-current carrying state is achieved only when the condensate potential V 
equals the external potential V’. This is an example of a general feature of the theory 
of [IS] and its expanded version below: namely for a given set of extemal potentials, the 
condensate potential must be determined self-consistently to achieve a steady state solution. 
The problem of determining the steady state distribution of the internal degrees of freedom 
of a scatterer must be faced by any theory of transport in the presence of interactions. 
However, for a system in which quasi-particle interactions arise through Andreev scattering 
only, this problem is simplified, because only a small number of parameters is needed to 
specify the state of a superconducting condensate and only one of these ( V )  explicitly enters 
linear response formulae for transport coefficients. The existence of a unique steady state 
condensate potential is a key feature, without which (3.1) could not be written down. 
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If-the cofactormatrix of a;, is h;j, then inverting (3.1) yields (vi - V )  = d-l E;=, h,;Ij, 
where d is the determinant of the matrix a;]. For the experimental case of interest; where 
only tboprobes (I and 0 cany'cumnt. we write I, = - I ,  = I and I; = 0 for i # a, 8, to 
yield 

Vi - V = I(h,; - hp;)/d.  (3.4) 

From this expression, the conductance G;? = [ / (V i  - 4) is given by 

Gu? 'I = d / &  'J (3.5) 
~ 

where 

(3.6) U/, dj j  = h,; - hp; + h/,j - h UJ . 

From (3.4), the voltages are given by 
. .  

p . ~ .  V, - V = G$(Vx - h)(ba; - hp;)/d = (Vk - &)(be; -bo;)/& . (3.7) 

-Equations (3.343.7) are very general results, which we shall illustrate by considering the 
two- and three-probe formulae in detail. For a normal system where d = 0, we shall see. 
that the denominator on the right-hand side of (3.5) also vanishes and. consequently, in the 
limit x; + 0, y; + 0, the ratio is well defined. In contrast the potentials Vi - V will be 
.shown to depend sensitively on the manner in which the limit is approached. 

The two-probe formula is implicit in the analysis of Lambert [I51 and has been written 
down explicitly in [9]. For n = 2. (3.5) yields 

G1:=(allau-a21a12)J(h11 -hi f h ~ 2 - b ~ )  

(3.8) 

Since the denominator of this expression is x I + x ~  ind the numerator is a1 I (XI +x2) -xlyi = 
a&l + x2) - x2yi. one finds 

= (aim -a2k"22 +a12 +ail + O X ) .  

~ t : = a l l  -xl~1/(xi  +xz)=au-x2~2/ (xI  +xZ) .  (3.9) 

Note thaL since the determinant of the matrix a;j is guaranteed to vanish when x;,  y; + 0, 
the expression for Gi: possesses a vanishing denominator in this limit. Nevertheless, as 
illusgated by (3.9), the conductance is well behaved, becausethe denominator is multiplied 
by a term which is second order in x;, y;. Consequently in the 'non-interacting normal 
limit', where x;, y; --+ 0, the second term on the right-hand side of (3.9) vanishes, to yield 
the two-probe Buttiker conductance 

GI: + all =a=. (3. IO) 

An interesting consequence of'the minus sign in (3.9) is that the switching on of 
superconductivity, parametrized by increasing {xi, y;) from zero, can cause Gf: to either 
increase or decrease. . ~ 

The quantity ~p = eV,  which in the presence~of superconductivity is identified with 
the condensate chemical potential, is obtained by noting that' (3.7) yields VI - V = 
(VI - V~)(~II - hz)/d,': and V2 - V = ( V I  - V ~ ) ( h l 2  - hz)/di:. which combine to 
yield 

(3.1 I )  v = VI +(Vi - VdYI/(YI + Y2). 



4194 C J Lambert 

Since the numerator and denominator in the second term on the right-hand side are both 
linear in yi. the limit that these quantities vanish can only be obtained by computing them 
explicitly and then taking the limit. This suggests that, for a system near its transition 
temperature, the voltage V may be much more sensitive to fluctuations than the conductance 

In the literature [23-291. a great deal of attention has focused on the boundary resistance 
between a normal 'lead' and a superconductor. In general, since reflection and transmission 
coefficients are non-local, the resistance of a superconductor connected to a normal leads 
cannot be uniquely divided into two separate boundary resistances. One exception to this 
arises in the limit of zero transmission, where a12 = a21 = 0 and (3.9) reduces to 

G;:. 

GI: = I l / U l l  + l/a221-'. (3.12) 

Hence the two-probe resistance [Cl:]-' reduces to a sum of two boundary resistances 
RI = a;', R2 = a;' associated with the left and right leads respectively. In section 4, 
it will be shown that these are pmisely the boundary resistances derived by Blonder and 
co-workers [24]. 

Figure 6. A Ihm-probe system, in which lead 3 wries no 
v3 current. 

Having analysed the two-probe conductance in detail, we now turn to the case of three 
external reservoirs. An interesting class of experiments, measuring quasi-particle charge 
imbalance, are closely related to the three-probe system of figure 6. In the case of no 
transmission between probes 1 and 3 and probes 2 and 3, where a13 = a31 = 023 = ,232 = 0, 
equation (3.4) yields V3 - V = 0. Hence if probe 3 makes contact deep inside the 
superconductor, in a region where no quasi-particles from reservoirs 1 and 2 are transmitted, 
then V3 measures the condensate chemical potential p = eV.  More generally, if quasi- 
particles can be transmitted into probe 3, V3 - V is non-zero and can be interpreted as the 
potential difference between quasi-particles and the condensate arising from quasi-particle 
charge imbalance 119-211. For such a system one obtains from (3.5) 

Ia11a33 - - I ~ I I I ~ I  +XZ + - ~ l  - x 3 y m  - m y l a 3 3  + X I Y ~ I  + ~ 3 y 1 a t 3  c;; = 
O u b i  + X2 + X d  - X3Y3 

(3.13) 

This is a somewhat cumbersome result. which can be rewritten in many equivalent forms. 
The choice (3.13) makes explicit those terms which are quadratic in the small quantities 
x i ,  yi and can therefore be neglected in the normal limit. In this limit, (3.13) yields 

(3.14) 

and in the limit of no transmission into probe 3, the two-probe formula (3.10) is recovered. 
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For this three-probe configuration, (3.1) yields for the potential difference due to charge 
imbalance 

As noted above, if a32 = a31 = 0, then V3 = V and probe 3 measures the condensate 
potential. In  common with (3.1 I). both the numerator and denominator are linear in the 
quantities xi, y, and therefore the normal limit can only be taken &r explicit evaluation 
of these parameters. 

4. Calculation of transport matrix elements ai2 

To obtain expressions for transport matrix elements a,, of (3.1). we first relate them to S- 
matrix elements, by analogy with standard approaches to DC transport in normal disordered 
systems. For a system with a given normal potential U(?-), vector potential A(r) and order 
parameter A(r), the reflection and transmission coefficients of a quasi-particle of energy E 
are obtained by solving the Bogoliubov-de Gennes equation 

H(r)B(r)  = E*(?-) (4.1 ) 

where 

In the region occupied by ideal extemal leads, we choose A(T) = U ( r )  = A(r) = 0. 

0 L 
Figure 7. In one dimension. tk most general solution to the Bogoliubov-de Gennes equation 
wnsists of incoming and outgoing plane waves in Ihe external leads. 

At large distances from the scattering region, for &dimensional leads of constant cross 
section, the general solution of this equation reduces to the sum of a finite number of 
plane waves, associated with the quantization of transverse modes within the external 
'waveguides'. For plane waves of energy E, the ith lead will possess m,(E) incoming 
and m,(E) outgoing channels associated with distinct transverse wavevectors. The number 
of such channels is energy dependent and, except at E = 0, the number of particle channels 
m:(E) need not equal the number of hole channels m;(E). In what follows, the symbol I 
will be used to denote a triplet of quantum numbers (a, CY, i), which define an a-type channel 
of lead i, with transverse k-vector of quantum number a. Thus CY = +](-I) for particles 
(holes), i = 1, . . . , n and a = I .  2 . .  . ., m:(E). Having identified all possible channels, 
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the S-matrix S ( E )  of dimensionality M ( E )  = E:=, mi(E) = CyxI (m:(E) + m,:(E)) is 
defined by the relation 

lout) = S ( E .  A.  A. U)lin) (4.3) 

where lout) ([in)) is a vector of outgoing (incoming) plane wave amplitudes, each amplitude 
being multiplied by the square root of its longitudinal p u p  velocity to ensure unitarity of 
S. Clearly any scattering problem can be solved once S is known. 

As an example of how S can be computed in practice, consider the onedimensional 
system shown in figure 7. For this example, the S-matrix may be obtained after first 
introducing a transfer matrix T defined by 

and 

where 

(4.4) 

(4.5a) 

(4.5b) 

A range of iterative techniques are available [12,13] for computing T, and once it is known 
the S-matrix satisfying 

can be constructed. Indeed if S is written as 

s=(; :'.) 
then T has the form 

from which the following inverse relation is obtained: 

(4.7) 

(4.9) 

More generally, the above analysis remains valid for any two-probe system with d-  
dimensional leads of constant cross section, provided the four component column vectors 
introduced in (4.4) are replaced by M ( E )  component veCtorS describing the M ( E )  incoming 
and M ( E )  outgoing channels the collection of leads. 
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Clearly S(E, A ,  A, U )  is a functional of all physical potentials, as well as a function 
of E. Since H is Hermitian, quasi-particle probability is conserved, which yields 

S-’ (E.  A ,  A, U )  = S’(E, A ,  A, U) .  (4. IO) 

Furthermore, time reversal symmetry yields 

S*(E. A*, -A, U)  = S-’ (E,  A3 A, U )  (4.11) 

and hence 

S(E,  A*, -A, U )  = S‘ (E ,  A%A, U) .  (4.12) 

If a matrix P is constructed with elements Prr. = lSt# and vectors laut), I&) of 
probability fluxes are formed with elements equal to the squared magnitudes of lout), [in), 
then the equation for outgoing fluxes due to incoming incoherent wavepackets is of the form 

loit) = P [in) 
where from (4.10) 

MIEI MlEI  1 Prr. = f i r .  = 1. 
1 4  1 ‘ 4  

(4.13) 

(4.14) 

Furthermore, from (4.12). if A is real and A = 0, P is symmetric. To obtain expressions 
for transport coefficients, consider the [m!(E)mp(E)] matrix elements P,r(E), where 
1 = (a ,  cr, i) and I‘ = (h, B .  j ) .  Then the transition probability from all incoming B 
channels of lead j, energy E, to all outgoing cr channels of lead i is 

(4.15) 

Note that the elements P[p(E) appearing in this equation form a sub-matrix $’(E) of 
P ( E ) ,  with my@) rows and m f ( E )  columns. The elements of $@(E) are [P;’(E)],h = 
lI~p(E)l,,~,l~, where Szp(E) is the corresponding sub-matrix of S and satisfies the particle- 
hole symmetry relation 47’(E) = P;.‘-’(-E). Clearly, (4.15) can be written 

p:’(E) = T r ( [ ~ ~ ~ ( ~ ) ] [ ~ ~ ( E ) ] ’ } .  (4.16) 

From (4.14) we see that 

F , ~ ” ( E )  = mr(E)  (4.17a) 
irr 

and 

(4.17b) 

Taking into account the fact that. for each channel, the product of the density of states 
per unit length and the longitudinal group velocity is 2/h, where h is the Planck constant, 
the number of incident quasi-particles per unit time of type B along lead j ,  with energies 
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between E and E + AE, is J:(E) = (2/h)m!(E)&p(E), where &'(E) is the distribution 
of incoming quasi-particles of type ,!3, from reservoir j of temperature 7j and chemical 
potential pj.  Similarly, from (4.15,) the number of outgoing @-type quasi-particles per unit 
time in lead i ,  with energies between E and E + A E  is 

&E)AE = ( 2 / h )  F ; ~ ~ ( E > ~ : ( E ) A E .  
1.P 

The total electrical current in lead i due to all quasi-particles between E and E + AE is 
therefore ef j (E)AE.  where 

&(E)  = w ( J Y ( E )  - ? ( E ) )  
e=*] 

while the total flux of energy in this interval is EQi(E)AE,  where 

(4.18) 

(4.19) 

Hence we obtain 

(4.20) 

where mu is a diagonal matrix with elements m; = G;jmS(E) 
This is a very general result, which as derived, applies to any mesoscopic system 

described by a time-independent Hamiltonian. Clearly, all transport properties of interest 
can be obtained from integrals of the form 

and 

(4.21) 

(4.22) 

where p is an integer. In particular, electrical transport properties are obtained from el"'. 
thermal transport properties from Q'" and combinations such as thermopower by standard 
methods [30]. For the case where G(E) = ~expI((E-wOLj-CL))/keT]+l)-'.  expanding 
in p j  - p and retaining only the linear terms, yields (3. I), with 

(4.23) 

where f(E) is the Fermi function and the last step made use of particle-hole symmetry, 
P;'(E) = pcm-'(-E). At zero temperature, where - a f ( E ) / a E  = S(E) ,  this reduces to 

aij = (2e2/h)[mf(o)8;j - P ~ + ( o )  + P;+(o)I. (4.24) 
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For the case of two identical probes with mT(0) = m l ( 0 )  = N channels, it is convenient 
to write 

With this notation, the matrix of coefficients in (3.1) becomes (in units of 2e2/h) 

(4.25) 

(4.26) 

(4.27) 

The coefficients Ro. TO (R,, T,) are probabilities for normal (Andreev) reflection and 
transmission for quai-particles from reservoir 1, while RA, T,' ( R i ,  Ti)  are corresponding 
probabilities for quasi-particles from reservoir 2. From (4.14), these are normalized to the 
number N of channels per quasi-panicle type, per lead (in contrast with the normalization 
to unity in [15]) and satisfy 

(4.28) 

and 

To + T, = T,' + 7,'. (4.29) 

Clearly, unless all Andreev coefficients vanish, A possesses an inverse. 

and yz = 2(Ri + TA). Hence (3.9) yields [9] 
For this particular example. we find x i  = 2(Ta + 2). X I  = 2(T,'+ R:), y~ = 2(R,  + T,') 

Similarly (3.11) for the condensate potential reduces to 

V = VI + (VI - V?)( R, + T;)/( R, + Ro + Ta + Ti) .  (4.31) 

It is interesting to note that, for this example, the probability flux Q(0) of (4.20) is 
given by 

hC0) = Q2(0) = ( M I  - /12)(To + T W / h )  (4.32) 

and therefore if one introduces a 'probability conductance' defined by Gd = $1/ [2(p1  - 
w2)/h] .  one obtains 

Gd = TO + T. = Tr (rr') (4.33) 

where t is the lower left-hand sub-matrix of the multi-channel S-matrix o f  (4.7). Thus 
it is Gd rather than the electrical conductance which satisfies the well-known two-probe 
Biittiker formula in the presence of Andreev scattering. Since Gd is closely related to 
quasi-patticle diffusion and thermal conductance, this result leads one to expect that the 
latter will exhibit many of the properties associated with the electrical conductance of normal 
mesoscopic systems, such as universal conductance fluctuations and localization phenomena 
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The electrical conductance, on the other hand, is distinct from quasi-particle diffusion and 
therefore many of the standard results from the theory of transport in normal systems may 
be modified. This separation of diffusion and electrical conductance is highlighted by 
combining (4.30) and (4.32) to yield 

(4.34) 

(4.35) 

G!: = Gd 4- 2(Rar?i - Tar:)/(& 4- Ri -k T, -k Ti). 

G;: = 1/[(2%)-' + (2R;)-']. 
In the limit of zero diffusion (i.e. transmission), where Gd vanishes, this reduces to 

Hence, as noted in section 3, in this limit the two-probe resistance reduces to a sum of 
two boundaq resistances, reflecting the fact that even in the absence of diffusion, electrical 
current can flow from one reservoir to the other, through the exchange of charge between 
quasi-particles and the condensate at the normal-superconducting interfaces. The expression 
(2R,)-' for the boundary resistance of a single interface was first derived by Blonder and 
co-workers [24]. 

5. Dbcussion 

Having obtained generalized formulae for transport coefficients in terms of S-matrix 
elements, we end by briefly remarking on how the latter can be obtained, once the potentials 
U@), A(r)  and A(r) of (4.2) are known. To compute the S-matrix analytically, we write 
the Bogoliubov-de Gennes operator of (4.2) in the form H(r)  = Ho(r) +Hl ( r ) ,  where 
Ho(r) is diagonal and make use of the following 'golden rule', which was first written 
down in 191 and is generalized to many probes in appendix A 

(5.1) 
In this expression, S i . ( E )  is the S-matrix of the normal system described by Ho, T,:(E) 
is the T-matrix describing the additional scattering by HI and 6; , (E)  is the full Green 
function of the hybrid structure. To compute the S-matrix numerically, perhaps the most 
efficient method is based on the transfer matrix technique. described in appendix B. 

Equations (3.5) and (3.7). when combined with (4.13) and the S-matrix formulae of 
appendices A and B, form a complete description of DC transport, in systems with dimensions 
less than the inelastic scattering length. Of course, the potentials to be used in (4.2) should 
strictly be the fully self-consistent steady state values. In practice, these will only be known 
for the simplest cases and one will usually be forced to use non-self-consistent forms. 
which capture the essential physics. Many examples of such choices are to be found in the 
literature [6-14]. The analysis presented here will, for the first time, allow ideas developed 
in these and other articles to be extended to multi-probe transport measurements. 

The central results of this paper, namely equations (3.5H3.7). are a generalization of 
the original work of [I51 and build upon intuitive ideas developed for normal mesoscopic 
systems [17, 181. For normal systems, such formulae can be derived from an alternative 
viewpoint (311, which starts from the Kubo formula For the future it would be of interest 
to obtain a corresponding derivation, valid for mesoscopic superconductors. 

. &/, (E)  = $ . ( E )  +?;(E) = ~[u,(E)u/,(&)]1'Zi;l:,((E). 
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Appendix A. Golden rules for S-matrix coefficients 

To obtain analytic results for S-manix coefficients. we write the Bogoliubov-de Gennes 
operator of (4.2) in the form H ( T )  = H&) + HI(T) ,  where H&) is diagonal. In what 
follows 2 x 2 operators. such as H ( T ) ,  will be denoted by bold italic characters and two- 
component vectors, such as the right-hand side of (4.2). will be denoted by bold Greek 
symbols. 

Consider first a translationally invariant system, formed by joining two semi-infinite 
leads j. j 'of equal cross section and described by the kinetic energy operator h(r)  obtained 
by setting U(?) = A(T)  = 0 on the right-hand side of (4.2). The eigenstates of h(r)  
corresponding to a unit qWi-paItiCle flux of type p, energy E, incident along channel h of 
lead j, are plane waves of the form 

Under an adiabatic change to the normal multi-probe system described by Hdr) ,  such a 
state evolves into an eigenstate Q ~ ; ( T )  of H ~ ( T ) ,  of the form 

Note that, except for the case of two identical leads, even if Ho(T) is chosen to be the kinetic 
energy operator, +$(T) # $$(T), because the former includes the effect of scattering 
from boundaries between leads. 

Using the solutions (A.2) as a starting point, the corresponding exact wavefunction 
*:'(T) arising when H I  (T) # 0 is given by 

where the additional contribution to the outgoing scattered wavefunction of the 
superconducting system is 

In this equation, for a given choice of Ho(T). the 2 x 2 matrix H,(r)  is defined by 
Ht(r) = H ( T )  - Ho(T) and G*(r. TI.  E )  denotes a Green function belonging to Ho(T): 

~~ 

where subscripts + (-) refer to particles. (holes) and superscripts + (-) refer to causal 
(anti-causal) Green functions. 

If 1' = (b ,  B .  j )  labels an incoming B-type quasi-particle channel, with transverse 
quantum number h of lead j and I = (a, a. i) labels an outgoing channel of lead i, then 
since the S-matrix coefficient & ( E )  = [S,;P(E)],,.h is obtained by projecting the outgoing 
asymptotic part of*$(r) onto channel I ,  we find 

S d E )  = v / ( E )  dZPi [$::(pi + ~i)I'[*f;(Di +Pi) - S i . j $ f ; ( P i  + P i ) ] .  (A.6) s 
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In this expression, ul(E)  is the gmup velocity for channel 1 and a position vector in lead i 
has been written r; = (pi + p;), where 0; (p) is parallel (perpendicular) to the walls of 
lead i. In (A.6). the presence of the term &(pi + p i )  removes any conbibution from the 
incoming wave along channel I'. The pre-factor q ( E )  arises from a term tq(E)'n, which 
converts an outgoing intensity into an outgoing flux, and a second factor U I ( E ) ~ / ' ,  which 
corrects for the fact that the projecfion 'is carried out using a state 4:; normalized to unit 
flux rather than unit amplitude. Indeed, for leads of constant cmss section, an incoming 
plane wave of unit flux can be written 

&i(Pj + P j )  = .$(pj) ~ ~ ( , ( ~ ) ~ - ' " e x p ( i k ~ ( ~ ) q j ) / )  (A.7) 

where x,!(pj) is the transvem mode of channel I' and (up(E))-'flexp(ikj' P b  (E)qj)  is a 

plane wave of unit flux, with longitudinal wavevector k y ( E ) ,  whose sign is chosen such 
that q&.Qj + pj) an incoming wave. For example, in the case of two rectangular leads 
of cross sectional area d/ x di, aligned parallel to the x axis, p is replaced by Cartesian 
components y ,  z to yield 

P.h 

xp(y. z) = 2(d{ d;)-'/'sin nbrry/d{ sinnbxz/di (A.@ 

and qj becomes the Cartesian component x. 
Combining (A.6) and (A.7) yields the following exact result for S-matrix coefficients: 

W E )  = ISt%.h = u~(E)"~expIik~(EE)q;I d2p; x%)(&,,I L-d  

(A.9) x r q . %  + P i )  - 8;.jdj:&3, . + P I ) ] .  

Since open channels are orthogonal to evanescent closed channels, q; can be chosen to be 
any position within lead i, outside the scattering region. Furthermore, since the quantity in 
square brackets is outgoing, while exp[iky(E)q;] is incoming, the phase factors cancel to 
yield a result which is independent of 0;. After evaluating the right-hand side of (A.9). the 
coefficients pGp(E) of (4.16) can be computed. All reflection (transmission) coefIicients 
are obtained by choosing i = j ( i  # j )  and all normal (Andreev) coefficients from the 
choice (Y = p ((Y # p ) .  

Equation (A.9) forms a convenient starting point for developing series expansions in 
powers of A. To lowest order in A, it is clear from (A.4) and (A.6) that all Andreev 
scattering coefficients. which correspond to (Y f: p ,  are of order 1A12. To obtain higher- 
order results, we note that from (A.3) and (A.4) 

'J?$(r) = #i(r) + /d3r'&l-'' G+(r, r', E)Z'+(r'. I", E)@i(r") 

where 

T*W, r'. E )  = H1(r)6(r  - r') + 
Hence 

(A. 10) 

(A.11) s d3r"HI(r)G*(r. r", E)T*(r". r', E ) .  

(A.12) 
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where $, (E)  is obtained by substituting $ for Y on the right-hand side of (A.9) and 

q ; ( E )  = [u , (~)]”~exp[i&~(E)r l~]  

(A.13) 

The ‘golden rule’ (A.13) and can be~simplified by exploiting the intimate relationship 
between Green functions and scattering states. To illusbate this, consider again the system 
shown in figure 6(n)  and^ described by h ~ ( r ) , ~  which possesses plane wave eigenstates 
qfj(r)  and a diagonal causal Green function g+(r. r’, E) ,  with elements 

g,s(T, +’, E )  = &,pRi(r, r’. E )  

x j d2p id3r  r 3 n  d r xi a (pi)G;(ri, T‘, E)T$(r’, r”, E)+i,E(r 8.6 I! ). 

m 

= a,.fi Cxjb(~)Xf(~’)[~uI.(~)~-Iexp[i&r.b(~) 111 - V’II. (A.14) 
. .  h= I 

Under an adiabatic change from figure 6(a) to the scattering system described by H&). 
the state &(r) evolves to the scattering state @:(T) of (A.3). Hence the twocomponent 
vector 

where 

(A.15) 

evolves to the vector 

Provided T and r’ are chosen such that, in the scattering region, the right-hand sides 
of (A.14) and (A.15) are equal, (A.16) relates the Green function GS = 6,,gGi to an 
eigenstate 11 of the normal system. In what follows, for r’ located in lead j, this restriaion 
on r,  P’ will be denoted [r’ = r, , r > Z). If 7’ is located in lead j, then the condition 
r > T‘ implies that T is arbitrary, apart from the restriction that if T is also in lead j ,  r must 
be closer to the scatterer than r‘. With this definition, from (A.16). for (r’ = ri, r > r’}, 
the following quantity yields the wavefunctions of the normal system: 

G&i(r, E )  = exp[iky(E)v’l/ d2p’ G:(r,  T‘, E)xP(p’) = [ih(~,(E))~‘*]-’$~~(r). 

(A.17) 

As it stands, (A.17) could be used to eliminate +fi(r”) from the right-hand side of 
(A13). but not to replace G: in the latter by a wavefunction. This is because in the integrand 
of (A13). (7’ > r;), while in (A.17). (T’ = ri, T z r’}. To eliminate G: from (A.13), we 
note that since HO is Hermitian 

[G;(r, 7‘. E)]*  = G;(r’, T.  E ) .  (A. 18) 
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Furthermore, provided HO is chosen to be real, particle-hole symmetry yields 

G:(r, r’, E )  = -GI&. T‘, -E)  (A.19) 

which combines with (A.18) to yield 

G f ; ( r .  r’, E )  = [-GZ0(r’, r ,  -Ell*. ( A D )  

Noting that k2Y‘ ( -E)  = - k y ( E )  and since all U, are defined to be positive, U-, , ,~J( -E)  = 
U ~ . ~ J ( E ) ,  (A.20) and (A.15) combine to yield IT’ =vi. T z r’) 

[ ~ ( u r ( ~ ) ) ’ / * ] - ’ [ ~ ~ ~ ~ ( T ) ] *  = exp~iky(~)q’ ]  j d2p’ ~ : ( r ,  r’. ~)xf(p‘). (A.21) 

This allows (A.13) to be written. for real Ho, as - 

or equivalently, for real Ho, as 

?:(E) = -i?i[u@)ui(E)J’/2/d 3 r 3 u  r d r [G-e.a.i(r’. + -E)]*T&’, TI‘, E ) G A , . j ( ~ ” .  E ) .  

(A.22b) 

Equations (A.9) and (A.12) are equivalent expressions for the scattering matrix of a 
mesoscopic superconductor. Equation (k12)  expresses the full S-matrix as a sum of the 
scattering matrix So of HO and a contribution to scattering from the superconducting order 
parameter embodied in the solution to (A.11). If Ho(T) is chosen to equal /IO(?-), then So is 
diagonal and all non-trivial scattering is contained in T,$(E). If &(r) is chosen to be the 
2 x 2 matrix obtained by setting A ( r )  = 0 on the right-hand side of (4.2). then Ho(r) and 
therefore So describes the scattering of incident plane waves of the normal ‘background‘ 
material. This latter choice renders H ,  (T)  off-diagonal and to order A* yields 

(A.23) 

When combined with (A22a) and (A12). this is particularly useful when investigating 
changes in transport properties due to the onset of superconductivity. For completeness 
one also notes that a third expression for Sri@) is obtained from the result corresponding 
to (A.16) for the full Green function G+(T.T’, E )  of the superconducting system, satisfying 

( E I  - ~ ( r ) ) G * ( r .  r’, E )  = s(r - r ’ ) ~  

where I is a 2 x 2 unit matrix. The same argument which led to (A16) shows that provided 
[r’ = rj. T > r’] 
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In view of (A.9). for (r' = rj, r = ri, r t r'), we define 

E;,(E) = e x p i l k , R h ( E ) r i ' + k p u ( E ) ~ ] j d z p d 2 p !  ,$(pi)C?&(r, +', E)xjb(p') 

- ( ~ [ v , ( ~ ) v , . ( ~ ) 1 1 / 2 t - l ~ i , , , e x ~ i [ ~ ( ~ ) ~ ] . ,  (A.25)  

Then (A.9) reduces to (for real or complex Ho) 

S,p(E) = ih[v,(E)v,.(E)]"2C?~,(E). (A.26) 

This could have been derived by substituting (A17) into (A13). and expresses scattering 
matrix elements in terms of off-diagonal elements of the full Green function of the hybrid 
system. 

Appendiv B. Numerical evaluation of the S-matrix 

To obtain the S-matrix numerically, a simple approach is to compute the multichannel 
T-matrix of (4.4) and then evaluate S via (4.9). To construct T in one dimension, it is 
convenient to consider stepwise functions U@) and A@), which change only at a sequence 
of N5 steps. In this case, by insisting that a solution to (4.1) is continuous and has a 
continuous first derivative, the 4 x 4 transfer matrix Tj for step j can be obtained by 
matching solutions on either side of the discontinuity. The transfer matrix for the whole 
scatterer is then of the form 

To construct T in more than one dimension, a simple technique is to map (4.1) onto 
an equivalent tight-binding problem by discretizing the Laplacian. For example, in three 
dimensions a simple cubic lattice with lattice constant U is intrcduced and -V*@(x, y. 2)  

is replaced by 

+ ~ ~ ~ ~ , y . z ~ - ~ ~ X + l u . y , Z + l u ~ l l .  

Clearly, the energy y = h2u-2/2m, which plays the role of a tight-binding hopping matrix 
element, should be much larger than a typical value of A(?-). 

With the above replacement, for a lattice of N, points, the Hamiltonian H becomes a 
2 N ,  x 2Nc matrix of the form 

H=($ -H; " I )  (8.2) 

where HO (-H,*) is a Nc x Nc tight-binding matrix describing the particle (hole) degrees 
of freedom of the normal system and HI is a diagonal on-site particlehole coupling matrix 
with elements (HI),, = A(r,). More generally, if instead of a continuum Hamiltonian such 
as the top left-hand element of (4.2). one wishes to model the normal system by an arbitrary 
tight-binding Hamiltonian Ho. then (5.2) should be regarded as a starting point for such a 
modei, rather a discrete approximation to a continuum limit. 
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As an example, for a scatterer of length NI sites and width N2 sites, the T matrix of 
order M ( E )  appearing in (4.8) and (4.9) is obtained by first evaluating a product of N I  
complex transfer matrices, each of order 4N2, corresponding to the NI slices forming the 
scatterer and then identifying T with the sub-matrix of i= corresponding to open channels 
only. To maintain numerical stability, the product must be GramSchmidt orthogonalized 
after each step. Otherwise the result is dominated by the largest eigenvalue and the matrix 
inversions in (4.9) will fail. 
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