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~ Abstract. Afier presenting an intuitive picture of quasi-parficle transport in mescscopic
superconductors, which emphasizes the intimate relation between Andreev scattering and zero
resistivity, we-develop a general theory of DC transport in mesoscopic normal-superconducting
structures.  Generalized multi-probe conductance formulae are derived, which take into
account not only the effect of Andyeev scattering on irapsport coefficients, but also the
non-conservation of quasi-particle charge which arises in the presence of a superconducting

. condensate. Expenmem.s on quasl-pamale charge mealancc are descnbed naturally by this
approach

1 Iutmductlou

At a low cnough temperature, or for small enough systems, a quasi- pamcle such as
an electron or hole can pass through a sample without scattering inelastically, -

‘this mesoscopic limit, the phase coherence of quasi-particles is preserved and 'transpon
properties dépend in detail on the diffraction pattern produced by elastic scattering from
inhomogeneities and boundaries. During the past decade, the study of normal mesoscopic
- systems has led to the -discovery- of a range of new phenomena, including universal
~conductance fluctuations [1,2], quantized conductance of point contacts [3,4] and the
detection of macroscopic changes in transport coefﬁcwnts arising from tunnelling within
a single atomic two-level system [5].

Unti! recently, these advances had centred almost exclus:vely on normal mesoscopic
systems. However during the past few years, the hitherto distinct fields of mesoscopic
physics and superconductivity have come together, leading to the possibility of a range of
new developments involving hybrid normal-superconducting structures. One class of such

- systems is typified by mesoscopic Josephson junctions, which arise when a mesoscopic weak
link is formed between two non-mesoscopic superconducting contacts. For such structures,
the critical current /. is predicted to exhibit a range of new quantum phenomena. Recent
cxamples are the discretization of the critical current through a ballistic point contact [6],
the appearance of a universal resonant Josephson current through quantum dots [7] and the
prediction of universal supercurrent fluctuations in diffusive point contacts [8].

Another class of hybrid systems arises when the superconductor itself is mesoscopic.
This arises when a small superconducting sample is connected to the outside world
through normal external leads, or when superconducting islands are immersed in a normal
mesoscopic. background. In such systems, transport properties such as electrical or thermal
couductances exhibit new effects which are absent from their normal counterparts. For
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example, the electrical conductance of a sample containing two superconducting islands
is predicted to vary periodically with the phase difference of the islands, even when the
Josephson coupling between the islands is negligibly small [9-11]. Another example is the
prediction of superconductivity-induced Anderson localization [12—-14] in long strips, where
quasi-particles above the bulk energy gap can become localized by spatial fluctuations in a
superconducting order parameter. '

This paper is aimed at deriving multi-probe conductance formulae, which form a starting
point for examining a range of new effects associated with this second class of structures.
Many of these effects arise because of the fundamental difference between quasi-particle
transport and electrical conductance in the presence of a superconducting condensate. In
section 2, this is emphasized by presenting an intuitive picture of charge tramsport, which
provides new insight into the question of why the presence of an energy gap in a BCS
superconductor implies zero resistivity. In section 2, we note that such a gap leads to
Andreev scattering and argue that if the latter gccurs in steady state, then zero resistivity is
an immediate consequence.

The argument presented in section 2 js important, because it suggests that modem
approaches to transport in normal mesoscopic systems should form a useful starting point
for understanding transport in the presence of superconductivity. However, since current
theories of transport in normal mesoscopic structures do not differentiate between quasi-
particle diffusion and charge transport, it is clear that the fundamental conductance formulae
at the heart of these theories must be modified. In [15] current—voltage relations needed to
modify both the Landauer formula [16, 17] and the two-probe Biittiker formula [18] were
written down. In sections 3 and 4, a generalization of this treatment is presented, which not
only yields appropriately moditied multi-probe conductance formulae, but also provides a
natural framework for describing measurements of quasi-particle charge imbalance [19~21]
in mesoscopic structures.

The multi-probe formulae derived in sections 3 and 4, which form the central results
of this paper, express multi-probe conductances in terms of S-matrix coefficients. In [9],

‘golden rules’ for Andreev scattering were derived, which express S-matrix elements in
terms of scattenng solutions to the Bogoliubov—de Gennes equation. Generalizations to
multi-probe systems are presented in appendix A.

2. Andreev scattering and superconductivity

In this section, an intuitive picture is presented, which underpins the more formal analysis
appearing in later sections. This picture illustrates the intimate relationship between Andreev
scattering and superconductivity and demonstrates why the energy gap of a superconductor
can lead to a vanishing resistivity. To this end, consider first an ideal one-dimensional
free-electron gas in a box of size L. At zero temperature, the free-clectron energy levels
E; = 17*k%/2m are filled up to the chemical potential x, as shown in figure 1(a). Figure
1(5) shows excited: states of such a system with the same number of electrons, produced by
removing an electron from a state ¢ with energy E; < u and placing it in a state p, with
Ey > . The change in momentum of the system is Ak = p—g, while the change in energy
is AE = E, — E; = (Ep — ) + (. — E,). Since each of the quantities in the parentheses
is positive, it is conventional to define quasi-particle excitation energies €) = |E; — ul
so that AE = €% 4- €% . The subscript —g in the second term is again conventional and
recognizes the fact that the change in momentum of the system can be regarded as a change
+p associated with the electron added to p and a change —¢q associated with the electron
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removed from q; the latter being equivalent to ahole added to state —g. These quasi-particie
dispersion relations, which express the change in energy of the system as a function of the
change in system momentum, are shown in figure 1(¢). along with the locations of the above
particie-like and hole-like excntatlons Since £ now represents the. system momentum, it is
clear that the group velocity vk =h" ‘3kek ofa partlcle-hke (hole-llke) excltatmn is parallel
(anti- parallel) to its wavevector. .
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Figure 1. (a) The parabolic energy spectrum for a non- Flgure 2. A BCS energy gap arises when cusps in
in_te'racting"sjfét'em of electrons in one dimension, ()  the free-electron quasi-particle dlspersmn curve become
An excitation formed by removing an ‘electron below rounded. :
the Fermi level p and placing it into a higher energy

state. (¢) The corresponding quasx-pamcle excitation -

specu'um.

In terms of the excitation picture of figuré 1(c), a superconducting transition is merely
an expression of the fact that nature dislikes a singularity and therefore at a low enough
temperature a phase transition occurs, which rounds the cusps at £ = 0. For the simplest
case of an s-wave weak-coupling superconductor, this- ylelds the dispersion relation shown
in ﬁgure 2, where -

.-'Ek=[(60)2+lA[2]”2-: S @.1)

Clearly, such a dlsperSIon relation can only be written down when k is a good quantum
number. More generally, there exists a spatially varying superconducting order parameter
A(x) which vanishes in the normal phase. In most physical situations the coherence length

_ &, which sets the scale for spatial. variations in A(x), is much larger than the typical inverse
wavevector ki ' of a quasi-particle, where kg is defined by u = A%k%/2m. Consequently
qualitative results can be obtained usmg qua31-class1cal arguments, with IA(.:)[ actmg asa
local energy gap.

To answer the question of why the exlstence of a non-zero A(x) implies zero resistivity,
it is necessary to understand how excitations are (Andreev) reflected at an interface between
a normal metai and a superconductor. First; recall how the teflection of an electron at a
normal_potential barrier U(x) is: described quasi-classically. As shown in figure 3(a), an
incident- electron of energy E :is reflected at a classical turning point, where the local
wavevector k(x) = Tr"f[Zm(E — U(x)] vanishes. In this picture the electron slides down
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a sequence of local parabolic dispersion curves, until at the turning point it passes through
the dispersion minimum and both the group velocity and momentum are reversed. Andreev
reflection [22] at a normal-superconducting (N-S) interface can be understood through a
similar argument. By definition, A(x) vanishes in the normaal material and achieves its bulk
value A(co) deep inside the superconductor. In the absence of other potential variations at
the interface, the reflection of a quasi-particle can again be described by a sequence of local
dispersion relations, as shown in figure 3(h). Again, the classical turning point arises when
a quasi-particle of fixed energy, slides around the minimum of a local dispersion curve and
- reverses its group velocity, In contrast with normal reflection, the momentum is almost
unchanged, whereas the character of the excitation has changed from being particle-like to
hole-like. In two dimensions, the reflection process is shown in figure 3(c). In £ space an
incident patticle outside the Fermi circle evolves into a hole inside the Fermi circle. In real
space, all components of the group velocity are reversed and the N—S boundary acts like a
phase conjugate mirror.

These essential differences between normal and Andreev scattering immediately imply
that there is a fundamental difference between charge transport in superconducting and
. noimal materials. To highlight an important consequence of this, first consider charge
transport though a normal mesoscopic material. A typical viewpoint adopted when
describing such a system in one dimension is shown in figure 4(a), which depicts a scattering
region of length L connected by perfect external leads to the outside world. If a unit particle
flux is incident from the left, then at equilibrium the only possibie outgoing fluxes are a
transmitted flux on the right and a reflected flux on the left. The intensities of these fluxes
are Ty and Ry respectively and satisfy Ry + Ty = 1. The current in the left lead is clearly
! = e(l — Ry), where e is the elecironic charge. If the scattering region contains 2 finite
fraction of impurities, then it is well known that as L — oo, Tj — 0. Consequently
Ry — 1, I — 0 and therefore the electrical resistance diverges. In comtrast, if A(x) is
non-zero within the scattering region, two new possibilities of Andreev transmission and
Andreev reflection arise, as shown in figure 4(b). If the intensities for these processes are
T and R, respectively, then Ro-+ Ty + Ra+ 7, = 1 and since a reflected hole moving to the
left produces a current to the right, the current in the left lead is [ = e(1 — Rg + Ra). The
relative strengths of different scattering processes depend on the microscopic structure of
an interface and only for the ideal boundary considered in figure 3(b) will normal reflection
processes be small. As L — o0 one again finds that all transmission coefficients vanish, so
that Ry + R, = 1. However, at equilibrium, provided R, # 0, the current does not vanish
and therefore the electrical resistance no longer diverges, In practice, since the reflection
of a quasi-particle wavepacket takes place in a boundary layer of finite extent, R, and Ry
will approach constant values as L — co and therefore the resistance per unit length will
vanish. : , '

The above argument is not quite complete, because to obtain an equilibrium situation
in which the charge on the superconductor does not change with time, one must consider
the effect of a second current carrying lead, connected to the right of the scatterer. This
will be taken into account in the following section and does not change the above result.
To summarize, the presence of a non-zero energy gap leads to the possibility of Andreev
scattering and the occurrence of the latter in steady state implies that a current can flow
through a dirty material, whose resistance would otherwise diverge. Of course, an energy
gap is not necessary for the onset of superconductivity. Andreev scattering can arise even
in the absence of an energy gap, provided there exists an order parameter which couples

particles to holes, For this reason, it is the latter rather than the former that is crucial to
superconductivity.
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Figure 3. (@) Quasi-classical reflection of an elec-
ton: by a potential barrier.. (5) The comesponding
-picture leading to Andreev reflection at a hormal-
superconducting interface. In more than one dimension,

" (c) shows Andreev reflection in k.space and real space.

. 1 , , '
(a) g hormal g To
R |

o

o L

O P e,
: Ro —— (swern> 5 1,

el

0 L

Figure 4, (a) Transmission and reflection of normal
clectrons in one dimension. (b)) The additional
Andreev processes, which arise in the presence’ of
superconductivity. : :

The above argument demonstraies that, while diffusive properties of quasi-particles
may not be qualitatively different from those of normal systems, the physics of charge
transport is grossly affected. - This implies that many of the standard formulae used to
describe charge-transport in normal mesoscopic media must be modified. To illustrate this,
we now quantify the above arguments by deriving generalizations of standard formulae for
multi-probe conductances of mesoscopic systems in the presence of Andreev scattering.

3. Multi-probe conductance formulae in the presence of Andreev scattering -

Consider an arbitrary scatterer S containing a supé_rconduc;:i_ng region of chemical potential
#,-connected to n external reservoirs by ideal normal current-carrying leads, as shown in
figure 5. If the chemical potentials of the reservoirs are {x;} and the currents {Z;}, then in
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the linear response regime the currents are related to the small quantities {z; — ) by an
expression of the form

=) %= V) 3-1)
J=l

where if e is the electronic charge, V; — V = (u; — #)/e. For a normal non-interacting
system, one can show that 37, 4; = 3}, a; = 0. In this case the potential V' does
not affect the right-hand side of (3.1) and when all {u;} are equal, all currents vanish.
These conservation laws are implicit in the derivation of conductance formulae for normai
systems and reflect the fact that, in the absence of inelastic scattering, only external potential
differences induce charge flow . In contrast, for an interacting system, and in particular
when Andreev scattering is present, they no longer hold, because the scattering region can
act as a source or sink of quasi-particle charge. As a consequence all conductance formulae
are modified and we are led to identify the quantities

Xi = Za,rj (3'2)
J=1
and

1n
=Y a (3-3)
i=1
as the natural variables which quantify this change. In section 4, the relation between g;; and

scattering matrix elements will be considered, but for the purpose of obtaining generalized
conductance formulae the values of these coefficients need not be specified.

Figure 5. A scatterer S with condensate potential V.,
" connected t~ n normal current-carrying leads.

For the equipotential case of V; = V’ for all , (3.1) yields ; = x;(V' — V) and
therefore a non-current carrying state is achieved only when the condensate potential V
equals the external potential V’, This is an example of a general feature of the theory
of [15] and its expanded version below; namely for a given set of external potentials, the
condensate potential must be determined self-consistently to achieve a steady state solution.
The problem of determining the steady state distribution of the internal degrees of freedom
of a scatterer must be faced by any theory of transport in the presence of interactions.
However, for a system in which quasi-particle interactions arise through Andreev scattering
only, this problem is simplified, because only a small number of parameters is needed to
specify the state of a superconducting condensate and only one of these (V) explicitly enters
linear response formulae for transport coefficients. The existence of a unique steady state
condensate potential is a key feature, without which (3.1) could not be written down.
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- I the cofactor matrix of aij is b, j» then inverting (3.1} yields (V; —V) = d-! Zj Bidy,
where d is the detennmant of the matrix a;;. For the experimental case of interest; where
only two-probes @ and ,B carry’ current, we wnte I, = «-Ifg Fand I; =0fori #a, 8, to
y:eId . ,

V=V = 1 - ’,’é.-)_/d-r o o (3.4)
- i;?rgm this éxpfesSibn, the conductance Gz}" ‘=- I/(V: = V) is 'giveﬁ by -
Cocfeqar 35
where - _ | | 7 | ,
dF = boi —bgi + by —b,,_, X o | ()
From (3 4), the voltages are given by | _: ) ] o
V=V = G Vs = Vb -bﬁ,w = (Ve = Vi) bui = bﬂ:)/dﬁ an

—Equatlons 3. 5)»-(3 7) are very gencral results, which we shall 1lIustrate by cons:denng the-
-two- and three-probe formulae in detail. For a normal system where d = 0, we shall see
that the denominator on the right-hand side of (3.5) also vanishes and consequently, in the -
limit x; = O, y; — 0, the ratio is well defined. In contrast the potentials V; — V' will be
‘shown to depend sensitively on the manner in which the limit is approached.
The two-probe formuta is implicit in the analysis of Lambert [15) and has been written
" down explicitly in [9]. Forn =2, (3.5) yields

- 012 = (auazz - azlalz)/(bu —bzl + bn — by2)

(audzz a11a:2)/(azz+ﬁlz+au+f121) : , (38)

Smce the denominator of this expressmn is x. +x2 and the numerator is a1y (x1 +xz) Xy =
azn(xi + x2) — X231, one finds ' :

G = dl: '—xi}’il(-fi +x2) —dzz Xz)’z/(xl +x2) T (3. 9)

Note that. since the determinant of the matrix a;; is guaranteed to vanish when x;, y; — 0,
the expression for G }2 possesses & vanishing denominator in this limit Nevertheless as
illustrated by (3.9), the conductance is well behaved, because the denominator is multiplied
by a term which is second order in x;, y;. Consequently in the ‘non- mteractmg normal
limit’, where x;, y; — 0, the second term on the right-hand side of (3. 9) vanishes, to yield
the two-probe Biittiker conductance '

Gi—an=an. - . . (3.10)

An interesting consequence of the minus sign in (3.9) is that the switching on of
superconductivity, parametrized by lncreasmg fxi, y,} from Zero, can cause G1 to either
increase or decrease. -

" The quantity & = eV, which in the prcscnce of superoonducnv:ty is identified w1th
the condensate chemical potential, is obtained by noting that (3 7) yields V{ — V =
Vi - Vo) (byy — bZ;)/d and Vo -~ V = (V| — Vz)(hlz - bzz)/du, which comblne to
yield T o ’

V=Vt i- Vz)yil(}‘l-i-J’z) e
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Since the numerator and denominator in the second term on the right-hand side are both
linear in y;, the limit that these quantities vanish can only be obtained by computing them
explicitly and then taking the limit. This suggests that, for a system near its transition
temperature, the voltage V may be much more sensitive to fluctuations than the conductance
G

In the literature [23-29]1, a great deal of attention has focused on the boundary resistance
between a normal ‘lead” and a superconductor. In general, since refiection and transmission
coefficients are non-local, the resistance of a superconductor connected to a normal leads
cannot be uniquely divided into two separate boundary resistances. One exception to this
arises in the limit of zero transmission, where a;; = a3 = ( and (3.9) reduces to

G ={1/ay + 1/ap]™". (3.12)

Hence the two~probe resistance [G]2]"' reduces to a sum of two boundary resistances
Ry = aj 1 , Rp = azz associated with the left and right leads respectively. In section 4,

it will be shown that these are precisely the boundary resistances derived by Blonder and
co-workers [24]. .

Figure 6. A three-probe system, in which lead 3 carries no
3 current.

Having analysed the two-probe conductance in detail, we now tum to the case of three
external reservoirs. An interesting class of experiments, measuring quasi-particle charge
imbaiance, are closely related to the three-probe system of figure 6. In the case of no
transmission between probes 1 and 3 and probes 2 and 3, where a;3 = a3 = a3 = a3 =0,
equation (3.4) yields V3 — V = 0. Hence if probe 3 makes contact deep inside the
superconductor, in a region where no quasi-particles from reservoirs 1 and 2 are transmitted,
then V3 measures the condensate chemical potential u = eV. More generally, if quasi-
particles can be transmitted into probe 3, V3 — V is non-zero and can be interpreted as the
potential difference between quasi-particles and the condensate arising from quasi-particle
charge imbalance [19-21]. For such a system one obtains from (3.5)

G2 = lanass — anaas l[x +xp + x3] — xayzan — xayies + X1 y3a3 +X3Y|at3
1z anlx; +x2 + X3 —xayz

(3.13)
This is a somewhat cumbersome result, which can be rewfittep; in many equivalent forms.
The choice (3.13) makes explicit those terms which are quadratic in the small quantities
Xi, ¥; and can therefore be neglected in the normal limit. In this Hmit, (3.13) yields

G} — lanas: — ajzaz /ass (3.14)

and in the limit of no transmission into probe 3, the two-probe formula (3.10) is recovered.
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For this three-probe conﬁguranon (3.7 y:elds for the potentlal difference due to charge
imbalance '

V=V = (Vi = Va)(bis = b}/ = (Vi = Valasays = anyal lasscy + 22 +:x3) = xsl.
: : — (3.15)

As noted above, if g = ay = 0, then V3 = V. and probe 3 measures the condensate
' potential. In common with 3. 11), both the rumerator and denominator are linear in the
~ quantities x;,” y; and therefore the normal hmlt can only be taken after exphc:t evaluauon
of these parameters. =

4. Calculation of transport matrix ele;hents aij

To obtain'expressi'onsifor_ transport matrix elements a;; of (3.1), we first relate them to S-
matrix elements, by analogy with standard approaches to DC transport in normal disordered
_ systems. For a system with a given normal potential U (r), vector potential A(r) and order
parameter A(r), the reflection and transmission coefficients of a quasi-particle of energy £
are obtained by solving the Bogoliubov—de Gennes equation :

He¥) =E¥@ @1
“where , ' o -
E(V- o)y U a@) )
H(r) = . . (4.2
(T)’ ( A*(T) B (V 4+ IL'A('J']) 7 +p— U(T') . ( )

' In the region occupxed by xdeai extemal leads we choose A('.") Ur) =A(r) =

(Ej(.ﬁ;eih + Be~7) R . (é) (A7 4 Ble —‘L;} |
( |

- 0 ¢ L igT f . —igx
+(§) e 4Dy o * 1)<C 4 Dle~irr)

0 S N
Figure 7, In one dlmensmn. the most general solition to the Bogoliubov—de Gennes equatmn
consists of mcommg and outgoing plane waves in the external leads.

At large distances from the scattering region, for d -dimensional leads of constant cross
section, the generai solution of this equation reduces to the sum of a finite number of
plane waves, associated with the quantization of transverse modes. within the external
wavegmdcs For plane waves of energy E, the ith lead will posséss m;(E) incoming
and m;(E) outgoing channels associated with distinct transverse wavevectors. The number
of such channels is energy dependent and, except at £ = 0, the number of particle channels

(E) need not equal the number of hole channels m; (E). In what follows, the symbol !
wnll be used to denote.a triplet of quantum numbers (a, &, /), which define an c-type channel
of lead i, with transverse k-vector of quantum number a. Thus a = +-1(—1) for particles
(holes), i = 1,...,n and @ = 1.2,...,m¥(E). Having identified all possible channels,
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the S-matrix S(E) of dimensionality M(E) = Y [, mi(E) = Y [_,(m7(E) + m; (E)) is
defined by the relation

lout) = S(E, A, A, U)lin) (4.3)

where |out} (lin}) is a vector of outgoing (incoming) plane wave amplitudes, each amplitude
being multiplied by the square root of its longitudinal group velocity to ensure unitarity of
S. Clearly any scattering problem can be solved once § is known.

As an example of how § can be computed in practice, consider the one-dimensional
system shown in figure 7. For this example, the S-matrix may be obtamed after first
introducing a transfer matrix T defined by

(2)-"(3 f

where
kl/ZA.'
o' 112 oyt ‘
(1’) =2 (4.52)
ql,'zcr' o
and
K2 A
I IZp
(O) =72 Z”ZB . ' (4.5b)
12
gHec

A range of iterative techniques are available [12, 13] for computing 7, and once it is known
the S-matrix satisfying

(3)-<(})

can be constructed. Indeed if S is written as

r v
S=(, r,) | .7

then T has the form

T T _{ ¢Hht e :
T= (Tu Tzz) = (—(r')-'r o “8)
from which the following inverse relation is obtained:
~T Ty P )
§ = 22 z 4.9
(M~ Tty @

More generally, the above analysis remains valid for any two-probe system with d-
dimensional leads of constant cross section, provided the four component column vectors
introduced in (4.4) are replaced by M(E) component vectors describing the M (E) incoming
and M(E) outgoing channels the collection of leads.
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Cléarly S(E,AA U)isa functional of all physical potentials, as well as a function
of E. Smce H is Hermitian, quasi-particle probablllty is conserved, whlch yields

STUE. A, A, U) = S'(E, A, 4, v @iy

* Furthermore, time reversal symmetry yields -

S*(E.A* —A,U)=S"V(E, A, A U) - @11

ahrdrhence o . . |
| S(E, A", —A U) = SE, A, A UY. - ' @12
'.If a matrix F is i:ons-tructed with elemeﬁts Py 7=_ ISi1* and vectors |Sut), Iiﬁ) of

probability fluxes are formed with elements equal to the squared magnitudes of [out), lin},
then the equation for outgoing fluxes due to incoming incoherent wavepackets is of the form

oty = PRy ,_ - : (4.13)
where from {4.10} ' 7 7
M(E) - MIE)

| Z Py = Z Py =1. S @

Furthermore, from (4. 12) if A is real and A 0, P is symmetric. To obtain exprcsswns
for transport coefficients,- consider the - [m; (E)m$(E)] matrix elements Py (E) where
I = (a,a i) and I' = (b,B,j). Then the transition probability from all mcommg B

channels of lead Jj- energy E, to all outgoing & channels of lead i is : :

PP E=YPeE). ' 4.15)
B N . . )

~ Note that the elements Py (£) appearing in this equation form a sub-matrix P"‘B (E) of
P(E) with ¢ (E) rows and m/ (E) columns. The elements of P;" (E) are [P“”(E)],,,, =
IS B ( EY)as|2, where S"ﬂ (E) is the correspondmg sub-matrix of S and satisfies the particle—

hole symmetry rel_a_taon P“ﬁ (E) Joh (—E). Clearly, (4.15) can be written
| '"-‘"f"*(E) Tr{[S""(E)HS"”(E)]f} L 4.16)
From (4 14) we see that , | ‘
ZP“"’(E)- mE @
and | “ o |
ZP“"(E) m (). @I

Takmg into account the fact that for each .channel, the product of the density of states
per unit length and the longitudinal group velocity is 2/ &, where k is the Planck constant,
the number of incident quasi-particles per unit time of type 8 along lead j, with energies
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between £ and £ + AE, is Jﬁ(E) (Z/h)m’e(E)fﬁ(E) where fﬁ(E) is the distribution
of incoming quasi-particles of type B, from reservonr jof tempcrature T; and chemical
potential z;. Similarly, from {4.15,) the number of outgoing a-type quasrpamcles per unit
time in lead i, with energies between £ and E+ AE is

THEAE = /h) Z PP f(E)AE.

The total electrical current in lead ¢ due to all quasi-particles between £ and £ + AE is
therefore eI,(E)AE where

B(Ey="Y" a(Jr(E) - JH(E)) (4.18)

o=t
7 while the total flux of eriergy in this intervai is E Q;(E}AE, where.
OiE)Y =Y (J(E) - TUE)). ' 4.19)
a==1
Hence we obtain
iE) - PHHE) + E**’(E} —m~ + P~(E) - P*(E)\ ( £*(E}
Q(E) m+ — PYH(E)— P~H(E) m~ — P~~(E)~ P*(E) F(E}
4.20)
where m*® is a diagonal matrix with elements m{; = &;;m; (E}
This is a very general result, which as denved applies to any mesoscopic system

described by a time-independent Hamiltonian. Clearly, all transport propcrtles of interest
can be obtained from integrals of the form

e = f EPI(E) : (4.21)
D

and
QW=f EPO(E) @22)
- 4]

where p is an integer. In particular, electrical transport properties are obtained from eI'®,
thermal transport properties from @'" and combinations such as thermopower by standard
methods [30]. For the case where _f}’(E) = {expl((E —a(u; —w))/ kgT1+1}7, expanding
in 4y — p and retaining only the linear terms, yields (3.1), with

® —3f(E) ) = -
gij = T | TeE [(m }-"(E)au '*71’,-++(E)+ P7Y(E)

+ (n} (E) = B3 (E) + P (E)]

2 2 © _af(E ) )
- 'z_/m :{é )“’"f (EY8ij — PTH(E) + PH(E)] | @.23)

where F(E) is the Fermi function and the last step made use of particle~hole symmetry,
(E) P> F(—E). At zero temperature, where —3f (E)/3E = (E), this reduces to

= 6/ h)Im ()8 — PIHO0) + PO o (4.24)
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For the case of two identical probes with m+(0) { (0) = N channels, itis convenient
to write’ : - : . : : -

' -4-4-’:'_ Ry Tn'r- : ' s

- - R 7‘7 ' : _ :
—+ - a a .
7 @—(r W).. - - 426)
-'Wlth th:s notatlon the matrix of coefﬁcjents in (3 1) becomes (in umts of 232/ h)

-_ an an N- R0+Ra - L= To Y '
A_(am agz) ( -1y N-— RO-{-R' ’ ' (4.27)

The coefficients Ro Ty (R, T.) are probabllmes for normal (Andreev) reﬂect:on and
transmission. for quasi-particles from reservoir 1, while Ry Ty (R;, T,)) are corresponding
probabilities for quasi-particles from reservoir 2. From (4.14), these are normalized to the
- number N of channels per quam—pamcle type per lead (in contrast with the normallzatlon
to unity in [15]) and satlsfy :

RotTo+ Rt Ty = R0+T0+R’+T’ N - 4.28)
-and : _ ' | | o
| LA Ti=T+T. | 429
Clearly, uniess all Andreev coefficients venisﬁ, A possesses an invefse. |

. For this particular example, we find x; = 2(T, + Ru), x2 = 2(T/+ R0}, y1 = 2(R.+ T)
and y, = 2(R, + T,). Hence (3.9) yields 91 '

2Ty + RYT, + Ry) COARR -TTY.
G =N - X : 2 ar a,
e ot~ L+ RA+T+R TO+T+Ra+R;+Ta+T;’ ( ?’_(_D
Slmxlarly (3 11) for the condensate potermal reduces to _
V= V4 V- v,)(fe + /(R + R0+T +'r) - 431)

It is interesting to note that, for thlS example the probablhty flux Q(O) of (4 20) is
given by

0:10) = 0x(0) = (1 mm+mmm' T )

and therefore if one mtroduces a probabllrty conductance defined by Gy = o/ 2(u1 —
uz)/ k], one obtams _ _ A

Ga=To+T=Trir) -~ - @3

where ¢ is the Iower left-hand sub-matrix of the multi-channel S-matnx of {(4.7). Thus
it is G4 rather than the electr:cal conductance which satisfies the well-known two-probe
. Biittiker formula in the presence of Andreev scattering. .Since Gy is closely related. to
quasi-particle diffusion and thermal ‘conductance, this result'leads one to expect that the
latter will exhibit many of the properties associated with the electrical conductance of normal
mesoscopic systems, such as universal conductance fluctuations and localization phenomena,
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The electrical conductance, on the other hand, is distinct from quasi-particle diffusion and
therefore many of the standard results from the theory of transport in normal systems may
be modified. This separation of diffusion and electrical conductance is highlighted by
combining (4.30) and (4.32) to yield

G =Ga+2ARR — TR+ R+ T+ T, 4.34)
In the limit of zero diffusion (i.e. transmission), where G4 vanishes, this reduces to
Gl = 1/I(2R)"" + 2R) 1. (4.35)

Hence, as noted in section 3, in this limit the two-probe resistance reduces to a sum of
two boundary resistances, refiecting the fact that even in the absence of diffusion, electrical
current ¢an flow from one reservoir to the other, through the exchange of charge between
quasi-particles and the condensate at the normal—superconducting interfaces. The expression
(2R,)~! for the boundary resistance of a single interface was first derived by Blonder and
co-workers [24].

5. Discussion

Having obtained generalized formulag for wransport coefficients in terms of $-matrix
elements, we énd by briefly remarking on how the latter can be obtained, once the potentials
Ur), A(r) and A(r) of (4.2) are known. To compute the S-matrix analytically, we write
the Bogoliubov—de Gennes operator of (4.2) in the form H(r) = Hp(r) 4+ H,(r), where
Ho(r) is diagonal and make use of the following ‘golden rule’, which was first written
down in [9] and is generalized to many probes in appendix A:

. Si(E) = SJAE) + T;F(E) = h[w(E)vp(E))/2G [ (E). (5.1)

In this expression, SH.(E) is the S-matrix of the normal system described by Hy, T;}(E)
is the T-matrix describing the additional scattering by H| and 6‘?{,(5) is the full Green

function of the hybrid structure. To compute the S-matrix numerically, perhaps the most

efficient method is based on the transfer matrix technique, described in appendix B.

Equations (3.5) and (3.7), when combined with (4.13) and the S-matrix formulae of
appendices A and B, form a complete description of DC transport, in systems with dimensions
less than the inelastic scattering length, Of course, the potentials to be used in (4.2) should
strictly be the fully self-consistent steady state values. In practice, these will only be known
for the simplest cases and one will usually be forced to use non-self-consistent forms,
which capture the essential physics. Many examples of such choices are to be found in the
literature [6-14]. The analysis presented here will, for the first time, allow ideas developed
in these and other articles to be extended to multi-probe transport measurements.

The central resuits of this paper, namely equations (3.5}-(3.7), are a generalization of
the original work of [15] and build upon inwitive ideas developed for normal mesoscopic
systems [17,18]. For normal systems, such formulae can be derived from an alternative
viewpoint [31], which starts from the Kubo formula. For the future it would be of interest
to obtain a corresponding derivation, valid for mesoscopic superconductors.
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7 Appendix A. Golden rulm for S-matrix cuefﬁclents

To obtam analytlc results for S-mamxr coefficients, we write the Bogoliubov—de Gennes
operator of (4.2) in the form H(r) = Ho(r) + H,(r), where Hy(r) is diagonal. In what
follows 2 x 2 operators, such as H (), will be denoted by bold italic characters and two-
component vectors, such as the nght—hand side of (4.2), will be denoted by bold Greek
symbols.

Consider first a translauonally invariant system, forrned by joining. two semi-infinite
leads J. j" of equal cross section and described by the kinetic energy operator fip(r) obtained
_ by setting U(r) = A(r) = 0 on the right-hand side of (4.2). The eigenstates of ho(r)
- corresponding to a unit quasi-particle flux of type 8, energy E, incident along channel » of
lead j, are plane waves of the form - :

- ¢f5(") =3ﬂ.+| ({I}) ¢‘f’£’(1') + aﬂ.—,l ({I}) ‘;b;;(r) (Al)

Under an adiabatic change to the normai multi-probe system described by Hy(r}, such a
state evolves into an eigenstate qu E('r) of Ho('r), of the form :

¢ﬁﬁ(r)=6ﬂ,+:( )w (r)+aﬂ .( )w;E ™). . (A_.z)

Note that, except for the case of two identical leads, even if Ho(r) is chosen-to be the kinetic
energy operator, 1,[:J E('r) #* qb‘f ‘e(r), because the former includes the effect of scattcnng
from boundaries between leads.
Usmg the solutions (A.2) as a startmg pomt the correspondmg exact wavefuncnon
i E(r) arising when H, (r) # O is given by

E(r) 1,0 MAORS /A0 T B C )

~ where the addxtlonal contnbutlon to the outgomg scattered wavefunction of the
. superconductmg system is - :

‘I'j“E(r)' fd‘r’G"'('r 7, E)Hl(r)'I'ﬂE(r) o S '(A.4)='

_In- ,thi's- _equation'," for a given ‘choice of Ho(r), the 2 x 2 matrix Hl('rj is deﬁncd_by
H(r) = H(r) — Ho(r) and G*(r. 7', E) denotes a Green function belonging to Ho(r):

GEr. v, E) - 0 ) '(A_s)

+ 7 ] —
G("""E)"‘(' 0 GEHr.r.E)

_ where subscnpts =+ (~) refer to pamcles {holes) and superscnpts + () refer to causal
{anti-causal) Green functions.
-If ¥V = (b, B.j) labels an incoming B-type quasi-particle channel, with transverse
quantum number b of lead j and / = (a, oz i) labels an outgoing channel of lead i, then
since the S-matrix coefficient S (E) = [ (E)]u » is obtained by pro_lectmg the outgoing

asymptotlc part of ‘I'f 4} onto channel ! we find

SiE) = w(E) [ @ et (ﬁ.+p.)]' 2(;3,+p,> 8.,¢,E(ﬁf+pf)1 (A6)
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In this expression, v (E) is the group velocity for channel ! and a position vector in lead i
has been written r; = (G; + p;), where 3; (f) is parallel (perpendicular) to the walis of
lead i. In (A.6), the presence of the term. qu '(B; + p;) removes any contribution from the
incoming wave along channel ¥, The pre-factor v(E) arises from 2 term v (E)!/2, which
converts an outgoing intensity into an outgoing flux, and a second factor w(£)'/%, which
corrects for the fact that the projection is carried out using a state ¢ g normalized to unit
flux rather than unit amplitude. Indeed, for leads of constant cross section, an incoming
plane wave of unit flux can be written

128 + i) = x} o) [vp(E)]"’zexp(ikf-”(s)n,> ATy

where x/(p;) is the transverse mode of channel /' and (vp(E))"Wexp(zkﬂ (E)ny) is a
plane wave of unit flux, with longitudinal wavevector kﬂ (E), whose sign is chosen such
that ¢ﬁ g (8; + p;) an incoming wave. For example, in the case of two rectangular leads

of cross sectional area d" X d2’ , aligned parallel to the x axis, p is replaced by cartesian
components y, z to yield

xf(y, z) = 2(d{ d_-‘_,i)‘lfzsin m,:rry/d{ sinn;,:rrz/d{ {A.8)

and n; becomes the cartesian component x.
Combining (A.6) and (A.7) yields the following exact result for S-matrix coefficients:

() = 153 Jaw = w(E) Pexplikf(Evmi [ iy X! () Bas Busmd)
x['I'ﬁ_i_’(B,+p,)— L1 PLe (B + Pl (A9

Since open channels are orthogonal to evanescent closed channels, #; can be chosen to be
any position within lead /, outside the scattering region. Furthermore, since the quantity in
square brackets is outgoing, while expl[ik; ?(£)n;] is incoming, the phase factors cancel to
yield a result whlch is independent of #;. After evaluating the right-hand side of (A.9), the
coefficients P (E) of (4.16) can be computed. All reflection (transmission) coefficients
are obtained by choosing { = j (/ # j) and all normal (Andreev) coefficients from the
choice ¢ = 8 (o # B).

Equation (A.9) forms a convenient starting point for developing series expansions in
powers of A, To lowest order in A, it is clear from (A.4) and (A.6) that all Andreev
scattering coefficients, which correspond to o # B, are of order {A]%. To obtain higher-
order results, we note that from {A.3) and (A.4)

‘I‘ﬁ'g('?‘) ¢ﬁg(T) + f drdd” G, v, EYTH (7", E)z,bj’_ 20" (A.10)
where 7

TE(r, v, By = Hi(r)s(r — ') + f & H ("GE(r, v, EYTE(+", v, E). (A1)
Hence '

Siw(E) = Sp(E)+ TH(E) (A.12)
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where S3.(E) is obtained by substituting ¥ for W on the right-hand side of (A.9) and
T (E) = [w(ED]'Pexpliky “ (Eyni] ,
X f Ao Erx e GE T, EYT LG, , E)wfs (r”) (A.13)

‘The “golden ruie’ (A.13) and can be—si_mpliﬁed by explomng the intimate relationship
between Green functions and scattering states. To illustrate this, consider again the system

shown in figure 6(a) and described by ho(r), which possesses plane wave clgenstates o

¢J E('r) and a diagonal cansal Grcen functlon gt(r, ', E), with elements
ga,a(r v, E) = aﬁgj(r v, E)

= uﬂZx, Px] (p)[mv,(En expt:k“(z) In~ 7|1 (a4

Under an ad::abanc change from figure 6(a) to thc scattering systemn described by Ho(r),
the state q& E(r) evolves to the scattenng state 'z,b A 5("') of (A 3). Hence the two-component
vector .

(1)

where -

b=

fﬁ(r v, E) = E X ()i (E))'ﬁ‘}*'exp[ :k"“’(E)n’]qbf E(r) - (Al5)
'evolves to the vector _ _ 7 ,
(§g+ )G;_(r. v, E) = Z x}’ur:»")_[ifz_(vzr(E))"-21“'l exz:[—ikf"’(E)n’wfﬁ(ﬂ- . (@Ale)

Provided r and v are chosen such that, in the scattenng region, the nght-hand sndes

of {A.14) and (A.15) are- equal, (A. 16) relates the Green function G = & gGﬁ to an

. clgenstate b of the normal system. In-what follows, for v’ located in iead J, this restriction

- on r, 7' will be denoted {7’ = r;, 7 > ) If ¢ is located in lead j, then the condition

7 > v implies that r is arbltrary, apart from the restriction that if = is also in lead j, v must -

be closer to the scatterer than 7'. With this definition, from (A.16), for {7’ = r;, T > '},
the: foIlowmg quantity ylelds the wavefuncnons of the normal systzm

GL .0 B= exp[lk""(E)n ] f &4 Gyt 7, E)x, ()= [nh(w(E))“z] 2 ().
; _ (A 17
As it stands, (A.17) could be used to eliminate wﬂ g (r") from the nght—hand side of
~ (A13), but not to replace G} in the latter by a waveﬁ.mctron This is because in the integrand

_of (Al3), {+' > r;}, while in (A. 17N, {r' = 7',, r > 7'}. To eliminate G"‘ from (A.13), we
- note that since Hy is Hermitian '

(Gr. v, B = G5 (r',, E). Al
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Furthermore, provided Hy is chosen to be real, particle-hole symmetry yields

Grr.v', E)= -G ,(r,7,—E) (A.19)
which combines with (A.18) to yield

Gir.v, Ey=[-GL @' v, ~E)*. (A20)

Noting that k7" (—E) = <4 (E) and since all v; are defined to be positive, Voga.i(—E) =
Vea.t (E), (A.20) and (A.15) combine to yield {' =7;, r > »'}

Wi EN 2 S8 () = expliki“ (E)q) f & Goir, . EN{ (). A21)
This allows (A.13) to be written, for real Hy, as
- TE(E) = (i)™ f SraEry S @I TR 7 EWEe @) (A22a)
or equivalently, for real Hj, as
TP (E) = —ih[u(E)vr(EN'? f ErErGl, v —ENT L0, r", E)G, ;(r". E).

(A22b)

Equations (A.9) and (A.12) are equivalent expressions for the scaitering matrix of a
mesoscopic superconductor. Equation (A.12) expresses the full S-matrix as a sum of the
scattering matrix S° of Fl, and a contribution to scattering from the superconducting order
parameter embodied in the solution to (AL11). If Hy(r) is chosen to equal hig(T), then S%is
diagonal and all non-trivial scattering is contained in T,}':(E). If Hy(r) is chosen to be the
2 x 2 matrix obtained by setting A(r) = 0 on the right-hand side of (4.2), then Hy(r) and
therefore $° describes the scattering of incident plane waves of the normal ‘background’
material. This latter choice renders H;(r) off-diagonal and to order A? yields
tre o _ [ A@GI(r, 7, EYA™ () 8(r — 7)A(r)
)= ( 3(r — rAM(r) AMGH(r. v, E)A(r’)) (A23)

When combined with (A22a) and (Al2), this is particularly useful when investigating
changes in transport properties due to the onset of superconductivity. For completeness
one also notes that a third expression for .S‘Hr(E) is obtained from the result corresponding
to (A.16) for the full Green function G*(r 7', E) of the superconducting system, satisfying

(EI - H(r))é*(r. v, E)=8(r —r)I

where I is a 2 X 2 unit matrix. The same argument which led to (A16) shows that provided
rf=r, r>1r}

Gt (r, v E) o . - "y -y
(ég’ N E)) = ,,; XP (0 ik (up(E))' 1 expl—ik{ (E)n/ 1T g (7). (A24)
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In view of (A. 9), for {r' = rj, r=r;, r> r’}, we define

G;;:(E)—exm{kﬂb(E)n K E] f A £ |
— fiB{u(Eyor (E)] 2} '&rcxpl[Zk‘“"(E)n] | | (Aa25)
Then (A 9) reduces to (for real or complex Hy) | | |
Si(E) = lu(Eyur(EVAGHE). a2

Thzs could have been derived by substituting (A17) into (A13) and expresses scattenng
matrix elements in terms of off- dxagonal elements of the full Green function of the hybrid
system

Appendix B. Numerical evaluation of the S-matrix

“To obtain the S-matrix numerically, a simple approach is to compute the multi-channel
- T-matrix of (4.4) and then evatuate S via (4.9). To construct T in one dimension, it is
convenient to consider stepwise functions /(x) and A(x), which change only at a sequence
- of N; steps. In this case, by insisting that a solution to (4.1) is continuous and has a
continuous first derivative, the 4 x 4 transfer. matrix 7; for step j can be obtained by
matching solutions on either side of the dlscontmulty The transfer matrix for the whole
scatterer is then of the fonn ' : '

=1 . -

" To construct T in ‘more than one dimension, a simple ‘technique is to map (4.1} onto

an equivalent tight-binding problem by discretizing the Laplacian. For example, in three

dimensions a simple cubic lattice with lattice constant ¢ is mtroduced and —Vzt,&(x y. z)
- i rep]aced by ' : .

a’? Z{W(x y,z) Y+, z)}+[w(x » 2y — 1!r(x y+ia,2)]

I=%1
+ [yr(x, y,z) ¥ix+la,y, z-Ha)]}

- Clearly, the energy y = h’a 2/2m which plays the role of a txght—bmdmg hoppmg matrix
element, should be much larger than a typical value of A(r).

With the above replacement, for a lattice of N. points, the Hamiltonian # becomes a
" 2N, x 2N, matrix of the form

;,, Hy H | , - S |
”-‘(H.* —Ha) | @2

where Hy (—Hy) is a N x N tight-binding matrix 'des'cribing the particle (hole) degrees
of freedom of the normal system and H), is a diagonal on-site particle-hole coupling matrix
with elements (H; ;i = A(r;). More genera]ly, if instead of a continuum Hamiltonian such
as-the top left-hand element of (4.2), one wishes to model the normal systemn by an arbitrary
tight-binding Hamiltonian Hp, then (5.2) should be regarded as a smrtmg point for such a
modei, rather a dlscrete approx:mauon to a continuum llmlt.
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As an example, for a scatterer of length N; sites and width N, sites, the T matrix of

order M (E) appearing in (4.8) and (4.9) is obtained by first evaluating a product T of Ny
complex transfer matrices, each of order 4NV, corresponding to the Ny slices forming the
scatterer and then identifying 7 with the sub-matrix of T corresponding to open channels
only. To maintain numerical stability, the product must be Gram-Schmidt orthogonalized
after each step. Otherwise the result is dominated by the largest eigenvalue and the matrix
inversions in (4.9) will fail.
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